Further Applications of Complex Variable Methods to Electrochemical Machining Problems

R. C. HEWSON-BROWNE
Department of Applied Mathematics and Computing Science, The University, Sheffield, Great Britain. (Received May 11, 1970)

SUMMARY

In this paper a complex variable method of solution to problems in electrochemical machining, developed in an earlier paper, is extended to cover a wider class of two-dimensional tool shapes. In particular the case of a straight sided tool with a finite land width is considered.

1. Introduction

Recently a number of papers have appeared in which mathematical techniques are applied to problems in electrochemical machining. In this process, metal is eroded by electrolysis from a work piece which acts as an anode. The cathode is a shaped machine tool which is fed towards the work piece. The electrolyte is pumped through the gap between the electrodes in order to remove the products of erosion. Fitz-Gerald and McGeough [1] have considered the problem of smoothing small surface irregularities on an otherwise plane work surface. Together with Marsh [2], they have also considered the problem of predicting the distribution of irregularities on an initially flat work piece for a given tool profile. In both papers the mathematical analysis was based on the assumption that deviations from a plane face on each electrode are small compared with the electrode gap. By using complex variable methods, Collett, Hewson-Browne and Windle [3] were able to predict the shape of the work piece for two essentially non-linear tool profiles.

In this present paper, the methods employed previously [3] are extended to cover a wider class of two-dimensional tools.

2. The General Configuration and Theory

The two-dimensional configuration to be considered is shown in Fig. 1, where the tool face ABC extends to infinity in two perpendicular directions. The portion $B C_{-}$is insulated whilst the portion $A B$ acts as a cathode for the electrochemical process. The tool is fed towards the surface $C_{+} D$ of the work piece and it is assumed that a steady state has been reached in which this surface moves in the direction of the tool feed at a constant rate equal to the tool feed rate. Taking axes $O x y$ moving with the tool, as shown in Fig. 1, the configuration is independent of time and the electric field $\boldsymbol{E}=\left(E_{x}, E_{y}, 0\right)$ satisfies

$$
\operatorname{div} E=0, \quad \operatorname{curl} E=0 .
$$

These may be satisfied by taking

$$
\begin{equation*}
E_{x}-i E_{y}=\frac{d w(z)}{d z}, \tag{1}
\end{equation*}
$$

where $z=x+i y$ and $w=\phi+i \psi$. On the electrodes the electric potential ϕ is a constant and we take

Figure 1. A sketch of the general configuration.

$$
\phi= \begin{cases}0 & \text { on } A B \tag{2}\\ \phi_{0} \quad(>0) & \text { on } C_{+} D .\end{cases}
$$

On the insulated surface of the tool ψ is a constant and we take

$$
\begin{equation*}
\psi=0 \quad \text { on } \quad B C_{-} . \tag{4}
\end{equation*}
$$

In the steady state, the normal erosion rate, which is proportional to the electric current, is equal to $u \cos \chi$, where u is the tool velocity and χ is the angle between the normal \hat{n} to the work surface and the x-axis. Thus

$$
\begin{equation*}
\frac{\partial \phi}{\partial n}=c \cos \chi \quad \text { on } \quad C_{+} D \tag{5}
\end{equation*}
$$

where c is a constant and $\partial / \partial n$ denotes differentiation along the normal. Since

$$
\cos \chi=\frac{\partial y}{\partial s} \quad \text { and } \quad \frac{\partial \phi}{\partial n}=\frac{\partial \psi}{\partial s},
$$

where s is the arc length measured along $D C_{+}$, (5) may be integrated to give

$$
\begin{equation*}
\psi=c\left(y-h_{\infty}\right) \quad \text { on } \quad C_{+} D . \tag{6}
\end{equation*}
$$

Here h_{∞} denotes the total overcut $C_{-} C_{+}$. It will also be found convenient to take

$$
\begin{equation*}
\psi=-\psi_{0}\left(\psi_{0} \geqq 0\right) \text { at } Y_{0} . \tag{7}
\end{equation*}
$$

As $y \rightarrow-\infty$, the effects from the portion $Y_{0} C_{-}$are negligible and

$$
\begin{equation*}
w \sim c\left(z-i h_{\infty}\right) . \tag{8}
\end{equation*}
$$

Thus, using (3),

$$
\begin{equation*}
h_{\mathrm{e}}=\phi_{0} / c, \tag{9}
\end{equation*}
$$

where h_{e} denotes the equilibrium machine gap $A D$.
Under the transformation

$$
\begin{equation*}
\tau=1-\left(1-k^{2}\right) \cos ^{2}\left(\frac{\pi w}{2 \phi_{0}}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leqq k=\tanh \left(\frac{\pi \psi_{0}}{2 \phi_{0}}\right) \leqq 1, \tag{11}
\end{equation*}
$$

the w-plane is mapped into the lower half of the τ-plane as shown in Fig. 2. On $Y_{0} B, w=i \psi$ $\left(-\psi_{0} \leqq \psi \leqq 0\right)$ and (10) gives

$$
\begin{equation*}
\psi=\frac{2 \phi_{0}}{\pi} \xi(\tau) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi(\tau)=\log \left[\frac{(1-\tau)^{\frac{1}{2}}-\left(k^{2}-\tau\right)^{\frac{1}{2}}}{\left(1-k^{2}\right)^{\frac{1}{2}}}\right] . \tag{13}
\end{equation*}
$$

(a)

Figure 2. (a) The w-plane. (b) The τ-plane.

Similarly on $B C$, where $w=\phi\left(0 \leqq \phi \leqq \phi_{0}\right)$,

$$
\begin{equation*}
\phi=\frac{2 \phi_{0}}{\pi} \eta(\tau), \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta(\tau)=\sin ^{-1}\left[\left(\frac{\tau-k^{2}}{1-k^{2}}\right)^{\frac{1}{2}}\right] \quad\left(0 \leqq \eta \leqq \frac{\pi}{2}\right) . \tag{15}
\end{equation*}
$$

Putting

$$
\begin{equation*}
z=\frac{w}{c}+i h_{\infty}+f(\tau), \tag{16}
\end{equation*}
$$

(8) implies that

$$
\begin{equation*}
f(\tau) \rightarrow 0 \quad \text { as } \quad|\tau| \rightarrow \infty . \tag{17}
\end{equation*}
$$

We also require

$$
\begin{equation*}
f(\tau) \text { bounded for } \tau \neq 1 \tag{18}
\end{equation*}
$$

Then on $A Y_{0}, x=0, \phi=0$ and so

$$
\begin{equation*}
\operatorname{Re}\{f(\tau)\}=0 . \tag{19}
\end{equation*}
$$

We may therefore continue $f(\tau)$ across $A Y_{0}$ by reflection. Since $\bar{\tau} \mathrm{e}^{-2 \pi i}$ is the reflection of τ in $A Y_{0}$,

$$
f\left(\bar{\tau} \mathrm{e}^{-2 \pi i}\right)=-\overline{f(\tau)}
$$

and in particular

$$
\begin{equation*}
\bar{f}(\tau)=-f\left(\tau \mathrm{e}^{-2 \pi i}\right) \quad \text { on } \quad Y_{0} D \tag{20}
\end{equation*}
$$

On $X_{0} C, y=0, \psi=0$ and so

$$
\operatorname{Im}\{f(\tau)\}=-h_{\infty}
$$

Using (20) this gives

$$
\begin{equation*}
f(\tau)+f\left(\tau \mathrm{e}^{-2 \pi i}\right)=-2 i h_{\infty} \quad \text { on } \quad X_{0} C \tag{21}
\end{equation*}
$$

On $C D, \psi=c\left(y-h_{\infty}\right)$ and so

$$
\operatorname{Im}\{f(\tau)\}=0 .
$$

Using (20) this gives

$$
\begin{equation*}
f(\tau)+f\left(\tau \mathrm{e}^{-2 \pi i}\right)=0 \quad \text { on } \quad C D \tag{22}
\end{equation*}
$$

In order to proceed further we consider the case in which the portion $Y_{0} X_{0}$ of the tool face consists of $(n+1)$ straight edges $G_{r} G_{r+1}(0 \leqq r \leqq n)$ as shown in Fig. 3, where the vertices G_{0}, G_{m} and G_{n+1} are to be identified with the points Y_{0}, B and X_{0} respectively.

Figure 3. The straight-sided configuration for the portion $Y_{0} X_{0}$ of the tool face.
The side $G_{r} G_{r+1}$ is specified by the length p_{r} of the perpendicular from 0 onto that side and by the angle β_{r} between the perpendicular and the negative x-axis. We suppose that the points G_{r} map into the points $\tau=\tau_{r}$ (real) where

$$
\begin{equation*}
\tau_{0}=0 \quad \text { and } \quad \tau_{m}=k^{2} . \tag{23}
\end{equation*}
$$

Then on $G_{r} G_{r+1}$

$$
p_{r}+x \cos \beta_{r}+y \sin \beta_{r}=0,
$$

and so

$$
\operatorname{Re}\left\{\mathrm{e}^{-i \beta_{r}} z\right\}=-p_{r} .
$$

Using (16) this becomes
$\operatorname{Re}\left\{\mathrm{e}^{\left.-i \beta_{r} f(\tau)\right\}=g_{r}(\tau), \quad \tau_{r}<\tau<\tau_{r+1}, ~, ~, ~, ~}\right.$
where

$$
\begin{equation*}
g_{r}(\tau)=-p_{r}-\frac{\phi}{c} \cos \beta_{r}-\left(\frac{\psi}{c}+h_{\infty}\right) \sin \beta_{r} \quad(0 \leqq r \leqq n) . \tag{25}
\end{equation*}
$$

Thus for $0 \leqq r \leqq m-1$ (i.e. on $Y_{0} B$ where $\phi=0$ and $\left.\psi=2 \phi_{0} \xi(\tau) / \pi\right)$,

$$
\begin{equation*}
g_{r}(\tau)=-p_{r}-\left(\frac{2 \phi_{0}}{\pi c} \xi(\tau)+h_{\infty}\right) \sin \beta_{r}, \tag{26}
\end{equation*}
$$

and for $m \leqq r \leqq n\left(\right.$ i.e. on $B X_{0}$ where $\phi=2 \phi_{0} \eta(\tau) / \pi$ and $\psi=0$),

$$
\begin{equation*}
g_{r}(\tau)=-p_{r}-\frac{2 \phi_{0}}{\pi c} \eta(\tau) \cos \beta_{r}-h_{\infty} \sin \beta_{r} . \tag{27}
\end{equation*}
$$

Using (20), (24) gives

$$
\begin{equation*}
f(\tau)-\mathrm{e}^{2 i \beta_{r}} f\left(\tau \mathrm{e}^{-2 \pi i}\right)=2 \mathrm{e}^{i \beta_{r}} g_{r}(\tau), \quad \tau_{r}<\tau<\tau_{r+1} \quad(0 \leqq r \leqq n) . \tag{28}
\end{equation*}
$$

Equations (21), (22) and (28) are to be solved subject to (17) and (18). This is a non-homogeneous Hilbert problem [4] whose solution depends on the function

$$
\begin{equation*}
f_{0}(\tau)=\prod_{r=0}^{n+1}\left(\tau-\tau_{r}\right)^{\left(\alpha_{r} / \pi\right)-1} \tag{29}
\end{equation*}
$$

where the α_{r} (assumed either greater or equal to π) are the external angles subtended by the tool face at the vertices G_{r}. In terms of the angles β_{r}, we have

$$
\begin{align*}
\alpha_{0} & =\pi+\beta_{0}, \\
\alpha_{r} & =\pi+\beta_{r}-\beta_{r-1}, \quad 1 \leqq r \leqq n, \tag{30}\\
\alpha_{n+1} & =3 \pi / 2-\beta_{n} .
\end{align*}
$$

The function $f_{0}(\tau)$ is in fact a solution of (21), (22), (28) after their right hand sides have been replaced by zero. The solution for $f(\tau)$ is then

$$
\begin{equation*}
f(\tau)=\frac{f_{0}(\tau)}{2 \pi i}\left\{\int_{1}^{i_{n+1}} \frac{-2 i h_{\infty}}{f_{0}(t)(t-\tau)} d t+\sum_{r=0}^{n} \int_{\tau_{r+1}}^{\tau_{r}} \frac{2 \mathrm{e}^{i \beta_{r}} g_{r}(t)}{f_{0}(t)(t-\tau)} d t\right\} . \tag{31}
\end{equation*}
$$

The method will be illustrated in the next section.

3. The Case of a Straight Sided Tool with Finite Land Width

The tool is shown in Fig. 4. The insulation extends to within a distance $\bar{\omega}$ (the land width) of the corner Y_{0}. Here

$$
\begin{equation*}
m=1, \quad n=0, \quad \alpha_{0}=\frac{3 \pi}{2}, \quad \alpha_{1}=\pi, \quad p_{0}=0, \quad \beta_{0}=\pi / 2 . \tag{32}
\end{equation*}
$$

In this case, (29) gives

$$
\begin{equation*}
f_{0}(\tau)=\tau^{\frac{1}{2}}, \tag{33}
\end{equation*}
$$

and (31) becomes

$$
\begin{equation*}
f(\tau)=\frac{\tau^{\frac{1}{2}}}{2 \pi i}\left\{\int_{1}^{k^{2}} \frac{-2 i h_{\infty}}{t^{\frac{1}{2}}(t-\tau)} d t+\int_{k^{2}}^{0} \frac{2 \mathrm{e}^{i \pi / 2} g_{0}(t)}{t^{\frac{1}{2}}(t-\tau)} d t\right\}, \tag{34}
\end{equation*}
$$

where, from (26),

$$
\begin{equation*}
g_{0}(t)=-\frac{2 \phi_{0}}{\pi c} \xi(t)-h_{\infty} . \tag{35}
\end{equation*}
$$

After some simplification (34) and (35) give

$$
\begin{equation*}
f(\tau)=-\frac{h_{\infty}}{\pi} \log \left(\frac{\tau^{\frac{1}{2}}+1}{\tau^{\frac{1}{2}}-1}\right)+\frac{\phi_{0}}{\pi^{2} c} \int_{0}^{k^{2}} \log \left(\frac{\tau^{\frac{1}{2}}+t^{\frac{1}{2}}}{\tau^{\frac{1}{2}}-t^{\frac{1}{2}}}\right) \frac{d t}{(1-t)^{\frac{1}{2}}\left(k^{2}-t\right)^{\frac{1}{2}}}, \tag{36}
\end{equation*}
$$

where the branches are chosen so that $f(\tau) \rightarrow 0$ as $|\tau| \rightarrow \infty$.
As $\tau \rightarrow 0$, it may be shown that

$$
\begin{equation*}
f(\tau) \sim i\left(\frac{\psi_{0}}{c}-h_{\infty}\right)+\frac{2}{\pi}\left(\frac{2 \phi_{0} K}{\pi c}-h_{\infty}\right) \tau^{\frac{1}{2}}-\frac{i \phi_{0} \tau}{\pi c k}+O\left(\tau^{\frac{3}{2}}\right), \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\int_{0}^{\pi / 2} \frac{d \theta}{\left(1-k^{2} \sin ^{2} \theta\right)^{\frac{1}{2}}} . \tag{38}
\end{equation*}
$$

is the complete elliptic integral of the first kind. From (10) we see that

$$
\begin{equation*}
w \sim-i \psi_{0}+\frac{i \phi_{0} \tau}{\pi k}+O\left(\tau^{2}\right) \text { as } \tau \rightarrow 0 . \tag{39}
\end{equation*}
$$

Using (37) and (39), (16) gives

$$
\begin{equation*}
z \sim \frac{2}{\pi}\left(\frac{2 \phi_{0} K}{\pi c}-h_{\infty}\right) \tau^{\frac{1}{2}}+O\left(\tau^{\frac{1}{2}}\right) \quad \text { as } \quad \tau \rightarrow 0 . \tag{40}
\end{equation*}
$$

However it is evident that the mapping from the z-plane to the τ-plane ceases to be conformal at Y_{0} in such a way that

$$
\begin{equation*}
z \propto \tau^{\frac{3}{2}} \quad \text { as } \quad \tau \rightarrow 0 . \tag{41}
\end{equation*}
$$

Comparing (40) with (41) we see that

$$
\begin{equation*}
h_{\infty}=\frac{2 \phi_{0} K}{\pi c} . \tag{42}
\end{equation*}
$$

Using (9), this may be expressed in the alternative form

$$
\begin{equation*}
\frac{\text { total overcut }}{\text { machining gap }}=\frac{h_{\infty}}{h_{\mathrm{e}}}=\frac{2 K}{\pi} . \tag{43}
\end{equation*}
$$

At $B, z=-\bar{\omega}, w=0$ and $\tau=k^{2}$. Thus (16) gives

$$
\bar{\omega}=-i h_{\infty}-f\left(k^{2}\right),
$$

and using (36) together with (9) and (42), we obtain

$$
\begin{equation*}
\frac{\text { landwidth }}{\text { machine gap }}=\frac{\bar{w}}{h_{\mathrm{c}}} \equiv \frac{2}{\pi^{2}}\left[K \log \left(\frac{1+k}{1-k}\right)-k \int_{0}^{1} \log \left(\frac{1+q}{1-q}\right) \frac{q d q}{\left(1-k^{2} q^{2}\right)^{\frac{1}{2}}\left(1-q^{2}\right)^{\frac{1}{2}}}\right. \tag{44}
\end{equation*}
$$

On the work piece surface $C_{+} D,(6)$ and (16) give

$$
\left.\begin{array}{l}
x=\phi_{0} / c+f(\tau) \\
y=h_{\infty}+\psi / c \tag{45}
\end{array}\right\}
$$

Thus, using (9), (10), (36) and (42), we obtain parametric equations of the work surface in the form

$$
\begin{align*}
& \frac{x}{h_{e}}=1-\frac{2 K}{\pi^{2}} \log \left(\frac{\tau^{\frac{1}{2}}+1}{\tau^{\frac{1}{2}}-1}\right)+\frac{1}{\pi^{2}} \int_{0}^{k^{2}} \log \left(\frac{\tau^{\frac{1}{2}}+t^{\frac{1}{2}}}{\tau^{\frac{1}{2}}-t^{\frac{1}{2}}}\right) \frac{d t}{(1-t)^{\frac{1}{2}}\left(k^{2}-t\right)^{\frac{1}{2}}}, \tag{46}\\
& \frac{y}{h_{e}}=\frac{2}{\pi}\left\{K-\log \left[\frac{(\tau-1)^{\frac{1}{2}}+\left(\tau-k^{2}\right)^{\frac{1}{2}}}{\left(1-k^{2}\right)^{\frac{1}{2}}}\right]\right\}, \tag{47}
\end{align*}
$$

where $\tau(>1)$ is real and the parameter k is related to the land width $\bar{\omega}$ by equation (44). The configuration for the case $k=0.99$ is shown in Fig. 4, where $\bar{\omega}=1.857 h_{\mathrm{e}}$ and $h_{\infty}=3.357 h_{\mathrm{e}}$.

The variation of the total overcut h_{∞} with the land with the land width is shown in Fig. 5(a). It may be shown from (43) and (44) that

$$
\begin{equation*}
\frac{h_{\infty}}{h_{\mathrm{e}}} \sim 1+\frac{1}{4}\left(\frac{3 \pi \bar{\omega}}{h_{\mathrm{e}}}\right)^{\frac{3}{3}}+O\left(\left[\frac{\bar{\omega}}{h_{\mathrm{e}}}\right]^{\frac{5}{5}}\right) \text { for } \bar{\omega} \ll h_{\mathrm{e}} \quad(k \rightarrow 0), \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{h_{\infty}}{h_{\mathrm{e}}} \sim\left(\frac{2 \bar{\omega}}{h_{\mathrm{e}}}\right)^{\frac{1}{2}}+\frac{2}{\pi} \log 2+O\left(\left[\frac{h_{\mathrm{e}}}{\overline{(})}\right]^{\frac{1}{2}}\right) \text { for } \bar{\omega} \gg h_{\mathrm{e}} \quad(k \rightarrow 1) . \tag{49}
\end{equation*}
$$

Figure 4. A particular configuration of a straight sided tool with insulation.

Figure 5. Graph of the land width $\bar{\omega}$ against (a) the total overcut h_{∞}, (b) the overcut h_{c} at the comer.

In Fig. 5(b), the variation of the overcut at the corner, h_{c}, with the land width is shown. This plot is of some interest in connection with some earlier work in which this same problem was investigated numerically under certain approximations [5]. The ratio of 1.7 for $h_{\mathrm{c}} / h_{\mathrm{e}}$ found there (for $\bar{\omega} \gg h_{\mathrm{e}}$) is not in very good agreement with the exact theory presented here which gives

$$
\begin{equation*}
0.731 \leqq h_{\mathrm{c}} / h_{\mathrm{e}} \leqq 1.159 \tag{50}
\end{equation*}
$$

The two extreme values in (50) correspond to the cases $\bar{\omega}=0$ and $\bar{\omega}=\infty$ respectively. An alternative treatment for these two cases has been given earlier [3].

REFERENCES

[1] J. M. Fitz-Gerald and J. A. McGeough, Mathematical theory of electrochemical machining 1 ; Anodic smoothing, J. Inst. Maths. Applics, 5 (1969) 387-408.
[2] J. M. Fitz-Gerald, J. A. McGeough and L. McL. Marsh, Mathematical theory of electrochemical machining 2; Anodic shaping, J. Inst. Maths. Applics, 5 (1969) 409-421.
[3] D. E. Collett, R. C. Hewson-Browne and D. W. Windle, A complex variable approach to electrochemical machining problems, J. Eng. Maths. 4 (1970) 29-37.
[4] M. I. Muskhelishvili, Singular Integral Equations (Groningen, 1953).
[5] Electrochemical machining, PERA report no. 145, 1965.

